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SUMMARY 

A general implicit (GI) method for solving iteratively the algebraic system arising from a finite difference 
approximation of an elliptic partial differential equation is formulated. Under certain assumptions this 
method can be reduced to the already known implicit techniques. It is shown that the GI method has a very 
special physical meaning when solving fluid flow problems. It is shown also how this method can be optimized 
to achieve the maximum rate of convergence. Finally it is shown how this new strategy is applied by solving 
some classical numerical fluid dynamics problems. 

KEY WOKUS Iterative Methods Implicit Procedures 

INTRODUCTION 

When solving numerically elliptic or parabolic problems in several spatial dimensions, in most 
cases some iteration procedure has to be used in order to solve the set of linear finite difference (or 
finite element) algebraic equations.' Sometimes the inversion of the resultant matrix coefficients 
can be done directly,' but usually they are limited to maximum number of points in the field and/or 
to certain kinds of PDEs (for example to the Poisson like equation). Generally the iteration 
procedure is constructed from two basic elements: a stationary iteration method and/or 
accelerating method. The stationary iterative methods are commonly divided into two groups'.3 
(a) the point iterative or explicit methods and (b) the line iteration or implicit methods. The only 
condition for an algorithm to serve as an iteration method is that it will converge to the solution of 
the system. Thus, it is enough to use the iteration method as a procedure by which the algebraic 
system is solved. In order to minimize the CPU computer time of the iteration procedure some 
accelerating techniques are also used. The gradient methods are usually used to speed the rate of 
convergence of the numerical solution. It is well known4 that using the gradient method with a 
system which is preconditioned by one of the iteration methods may produce a technique which is 
faster then any of the original methods.' Some examples of combining the conjugate gradient (CG) 
technique with some explicit iteration techniques (such as the Gauss-Seidel or the Jacobi methods) 
are given in Reference 1, and with some implicit iteration techniques (such as AD1 or line 
relaxation methods) are given in Reference 5. Also it was shown4 that when the CG method was 
preconditioned by the strongly implicit (SI) procedure6 it produced an extremely fast rate of 
convergence. 

It turns out that the gradient method is not always easily implemented in the iteration procedure 
and not always so efficient (as the system matrix [ A ]  begins to differ from symmetry, the rate of 
convergence of the CG method decreases). Moreover, when combining the gradient method with 

0271 -2091/85/040357-24SO2.40 
0 1985 by John Wiley & Sons, Ltd. 

Received May  1984 
Revised 9 August 1984 



358 AVI LIN 

stationary procedures for preconditioning, it is always better to have a stationary procedure which 
is comparatively fast by itself to get fast convergence from the combined procedure. That is, as the 
rate of convergence of the stationary technique increases, the preconditioning of the system’s 
matrix is ‘less incomplete’, and a higher rate of convergence is expected. Therefore, the present 
study is solely concerned with the improvement of basic stationary iterative techniques and 
specifically of the implicit methods, since they appear to be much more stable and faster than 
the explicit  method^.^ 

Most of the implicit methods are line methods, such as the line relaxation (LR) or the AD1 
techniques3 The SI method as well as the modified strongly implicit methods (MSI)7 are also 
implicit techniques, since before every iteration the algorithm’s coefficients are changed ‘elliptically’. 
When examining the various existing implicit techniques, one might ask if it is possible that all of 
them fall into a more general family of techniques. The goal of the present study is to define and find 
such a family which will be classified under the category of the ‘general implicit’ (GI) methods for 
solving the algebraic equations arising from an elliptic system. The generalization is such that under 
certain assumptions this family can be reduced to any of the known implicit techniques. The basis for 
such a strategy is discussed in the first part of this paper. As it turns out, this method is partially 
dependent on the nodal algebraic equation of the field’s grid points and it might be limited because of 
the way the iteration is executed. Consequently, in the second part, the so-called optimal general 
implicit technique is presented. Some stability and convergence features ofthese schemes will be also 
studied here. Most of the developments and applications will be given from the computational fluid 
dynamicarea.Numericalresu1tsshow that theGImethodis better than theothermethodsinsolving 
high Reynolds number flows. 

THE GENERAL IMPLICIT (GI) METHOD 

Some basic existing implicit methods 

Generally, implicit methods converge faster and exhibit much more stability, than explicit 
methods. Usually, the variables in the implicit methods are solved implicitly along lines: rows 
and columns in the AD1 techniques3 and diagonals in the MSI techniques7 Let us name this line 
the ‘implicit line’. Since the variables in the implicit techniques are solved in a coupled manner along 
the implicit line, their stability conditions (which are roughly conditions on the short wave 
disturbances in the field) become less severe than in the explicit methods3 Another feature of the 
implicit techniques is that the effect of the boundary conditions is felt immediately in the field, since 
the implicit line always runs between two boundary points, and all the equations along this line are 
~ o u p l e d . ~  Therefore, the long wave mode of disturbances is also decreased more rapidly by the 
implicit techniques than by the explicit techniques.’ The SI method does not differ from the regular 
implicit methods, since the algorithm’s coefficients depend on the coefficients of the neighbouring 
points. The MSI methods, which are modifications of the SI m e t h ~ d , ~  are also line implicit 
techniques. All the above description can be explained mathematically by presenting the 
incomplete LU decomposition for the various implicit formulations, as in Reference 8. The main 
idea of the present study is to try, in the spirit of the MSI technique, to generalize the line implicit 
techniques and to establish an optimal implicit technique which can be reduced under particular 
conditions to the well known existing implicit procedures. It turns out that there is no ad hoc proof 
of the observations that the present method is better than other iterative techniques which were 
examined. Thus the near-optimal factorization of equation (1) will not be studied in detail. The GI 
method will be the first method to be presented here as a preleminary study of the techniques to be 
described in this paper. 
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The general implicit ( G I )  method 

following one variable elliptic partial differential equation: 
For simplicity, the basic principle of the GI method will be demonstrated by considering the 

L(@) = 0 (1) 

where CD is the variable, L is a second order elliptic differential operator in the spatial co-ordinates 
and, possibly, parabolic in the time-like direction. Equation (1) presents a model for many of the 
convection-diffusion phenomena in n a t ~ r e . ~  By discretizing equation (1) on a finite grid, which is 
spread over the finite spatial domain of the solution Q, the value of CD at every grid point p& is 
connected algebraicaly to the CD values at the surrounding points e, w, n and s, as shown in Figure 1. 
We consider only a linear operator L; however, the solution of the non-linear algebraic system can 
frequently be found by quasi-linearizing the system and solving a sequence of linear problems3 
The linear difference equation can be written generally at the point p as follows: 

PO, + ECDe + WCD, +SO,  + N(D, + D ,  = 0 (2) 
where P, E, W, N and S are the coefficients of CD,, CDe, Ow, CD, and CD,, respectively centred at the point 
p and D, is the source term. For two dimensional fields with Dirichlet boundary conditions for CD, 
which has m x n discrete points, there are 

K = ( m - 2 ) x ( n - 2 )  (3) 
algebraic relations of the form of equation (2). This system of equations is generally very large and 
very sparse. Assuming that the finite difference algorithm is convergent, which means that there are 
no possible growing solutions, the goal is to solve the algebraic system given by equation ( 2 )  
iteratively in a stable and rapid manner. This, as mentioned in the introduction, is the requirement 
that the technique be as implicit and simultaneous as possible. 

The general implicit line 

Basically, implicit methods can be formulated by defining a spatial ordering among the grid 
points in R so that the system of algebraic equations has the possibility of being solved with 
maximum implicitness. This ordering creates the general implicit line (GIL) which can be defined 
as follows: 

Definition 1. The GIL is a continuous line in Q through all the discrete points with the following 
properties: 

* X  

Figure 1. The elementary finite difference cell 
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( 1 )  The number of intersections with itself should be minimized, 
(2) It is preferable that the GIL begins and ends at different grid points or on the field boundaries. 

The second property is not essential from the theoretical point of view, but it was deduced from the 
convergence rates of some numerical experiments. Examples of two possible GILs are given in 
Figure 2(a) and 2(b). Generally, the GIL is constructed in such a way that if it is drawn to some 
inner point p, the next point to which this line is to be continued should be one of the e, w, n or s 
neighbouring points to p, as is demonstrated in Figure 2(c). Only three out of these four possible 
points need be considered, since one of them has already been used to bring this line to the point p. 
Therefore, the complexity in creating a GIL is less than 0 ( 3 K ) .  Once it has been decided to which 
point the GIL is to be continued, the other two points will be defined as the ‘side points’ of the 
central point p (or of the pth equation) for solving a given GIL. The other three points which are on 
the GIL will be defined as the ‘main points’. After constructing the desired GIL, all the points of the 
field are numbered in the same order as they appear on the GIL. Equation (2) is then written for 
every point on the GIL, carrying the number of this point. The final system of equations is: 

CAI f@D> = (DD> (4) 

CAI = [MI- “1 (5 )  

where the system matrix coefficient [ A ]  can be written 

where [MI  is a tri-diagonal matrix built from the coefficients of the main points. Since the GIL is 
continuous, [MI  has the possibility of having filled diagonals. The [ N ]  matrix describes the 
contribution of the ‘side points’ to the balance ofequation (2). Usually, the non-zero entries of [ N ]  
appear in symmetric positions. 

t 

t 
(4 l-+--- 

Figure 2. (a), (b) examples for GIL; (c) generation of a GIL 
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Figure 3. Finite difference domain for example 1 

A possible iterative procedure 

The second part of the GI method is associated with defining an iterative technique for solving 
the difference equation (4) along a GIL. Since there are efficient block tri-diagonal systems solvers, 
one possibility is to use such a technique by writing 

[MI (@)"+ = [ N ]  (@}" + (b}" (6) 
where the upper index n is the iteration number counter. Here, the contributions of the side points 
are treated explicitly, whereas all the main variables (along the GIL) are treated implicitly (and are 
solved, for example, by the generalized Thomas algorithm). This possibility resembles in some 
sense the AD1 and the LR techniques as will be mentioned later. Other stationary techniques, such 
as the SI or the MSI procedures for solving equation (4) will also be considered shortly. Let us 
demonstrate such a solution by a simple example. 

Example 1 
Figure 3 describes a field of 6 x 5 discrete points, governed by an elliptic discretized equation for 

@ such as equation (2), with Dirichlet boundary conditions. The chosen GIL is shown also on this 
Figure. The source term vector ( b )  and the matrix [MI are 

= 
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and 

[MI = 

The underlined terms in ( b )  are the ‘side’ points’ contributions that are treated as known 
(explicitly) from iteration to iteration. It is clear that the technique is more like the Jacobi block 
iterative method than the GS block iterative method, since the old variables are not updated during 
the course of the iteration over all the field points. It is apparent that many other GILs can be 
constructed but the procedure is the same. 

Generalization of the method 

The GI method has two degrees of freedom: 
( 1 )  the choice of the GIL according to Definition 1 
(2) the choice of the means of splitting of the coefficients matrix [ A ]  according to the chosen 

iterative procedure to solve equation (4). 
It can easily be verified that with a choice of certain GILs and certain splittings of [A ] ,  one can 
obtain all the implicit techniques. For example, the ADI, the LR and the block Jacobi procedures 
may be obtained by letting the GIL (such as in Figure 2, say) include the boundary points, as can be 
seen in Figure 4(a). Here the algebraic system of K equations may be separated, for example, into 
m - 2 subsystems of n - 2 equations. Every subsystem is solved implicitly for @, along a column (or a 
row) of the field. The above procedures will be different only in the choice of the splitting procedure 
[as in equation ( 5 ) ] .  A similar technique to the MSI method can be obtained by choosing the GIL 
to have the ‘stairs’ mode along diagonals as shown in Figure 4(b). When the SI procedure6 is 
compared qualitatively to the GI  procedure, one can see that the special way of treating the two 
dimensional nature of the problem in the SI procedure is inherent in the GI procedure. Moreover, 
with the SI procedure a group of half of the points near the boundaries (which, in some sense, carry 
the short wave disturbances) do not satisfy the difference equation, whereas in the GI procedure all 
of the points in this group are very close to satisfying or exactly satisfy the governing difference 
equation. 

The way of treating the boundary conditions in the GI method is not the main reason 
for the success of this method (which is much faster in convergence than other implicit methods), 
but as will be discussed later, it is one of the reasons to the smooth rate of convergence 
as well. 
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Figure 4. Reduction of the GI method to the (a) LR and (b) MSI procedures 

An alternating direction general implicit ( A G I )  method 

conditions: 
For every given GIL it is possible to find at least one other GIL that fulfils the following 

(1) It will be normal to the original line at all points except at the boundary points or at the near 

(2) On the boundary points or at the near boundary points this line may be parallel or normal to 

In other words: the ‘side’ points of the GIL will be converted into ‘main’ points of the AGIL, and 
some of the ‘main’ points of the original GIL will be converted into ‘side’ points on the AGIL. An 
example of an AGIL is given in Figure 5. One iteration of this procedure is obtained by two sweeps; 
the first along GIL and the second along the AGIL. This technique will be called the alternating 
general implicit (AGI) procedure. It is reasonable to assume that the AGI method should converge 
faster then the GI method, just as the alternating line relaxation (ALR) techniques converge faster 
than the regular one-direction implicit procedures. In the present paper the AGI method, which is a 
topic by itself, will not be discussed in any depth. Next, we shall derive the basic features of the GI 
method for any elliptic operator L of equation ( 1 )  in conjunction with a convection-diffusion-like 
problem. 

boundary points. 

the original GIL as the continuity of this line requires. 
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Figure 5. Example of an AGIL 

The difference scheme of the conuection-diffusion equation 

The present study will be concentrated on the linear convection-diffusion equation, which is a 
reasonable model for many of the physical transport phenomena, such as the Navier-Stokes 
equations and the energy equation, among others. We shall deal with a time dependent self adjoint 
operator L which represents the following convection-diffusion problem for @: 

where t is the time or the time-like (iteration) co-ordinate, x and y are the physical co-ordinates of 
the two dimensional domain, u and u are prescribed velocity-like convection coefficient 
functions which are partially continued over R, and S(x, y )  is the source term. We shall assume also 
that max (lul, I u l )  is of the order of 1. For the Navier-Stokes equations, R is the Reynolds number 
of the flow. For simplicity without losing generality, let us spread over R an equally spaced grid in 
both directions x and y (see Figure 1). The diffusion term in the x direction, @,,, is discretized by a 
second order central difference at the point p as follows: 

A similar expression for the y diffusion term, QYy, may also be written. The convection terms are 
modelled in general by including the second-order correction." The convection in the x direction, 
@,, for example, is differenced as follows: 

0: - 2@', + @t, 

@ " + I _ _  @",I @t.-2@:,+@t, 

@"+ 1 - cD"+ 1 
, for u P 6 0  

, for u,>O 

P 
Ax + 2Ax I e  Ax 2Ax 

where the upper index n indicates the time step or the iteration number. Generally, for I = n + 1, the 
two equations (10) are the same, being the second-order accurate finite difference model for the first 
derivative. For 1 = n equation (10) results in the upwind differencing scheme which recovers its 
second order accuracy only in the steady state. For one dimensional cases it has been shown" that 
the 1 = n case is unconditionally stable and consistent. The I = 0 case is the classical upwind 
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difference for CD,. Here both 1 = n + 1 and E = n will be considered. The time derivative, CD,, is 
represented by the one sided differencing: 

Substituting equations (9), (10) and (1 1) into equation (8), an equation of the form of equation (2) is 
obtained for every point p in the field. It can be shown, by incorporating similar finite difference 
approximation to the various derivatives of equation (8), that equation (2) can always be derived 
with the following features: 

and only for 1 = n: 

(2)  

(3) 

It should be noted that constructing the coefficient matrix [ A ]  with any GIL, results in the P 
coefficients being on the main diagonal of [ A ] .  Equations (12c) means that for E = n in equation (10) 
the matrix [ A ]  is strictly diagonal dominant. Next we shall examine the features of the matrix 
coefficients of the GI algorithm. 

Some features of the GI algebraic system 

In the general case of a convection-diffusion equation, [ A ]  is not necessarily symmetric and 
therefore it is not necessarily positive definite unless there is no convection in the field, in which case 
a Poisson-like equation governs the transport phenomenon. 

All the iteration methods seek to solve the non-singular K x K system of equations (2), (4) by 
splitting [ A ]  into the [ M I  and [ N ]  matrices as was given by equation (5).  The iterative method 
then evaluates CD as follows: 

(13) 

(14) 

[ M I  (CD)'"' l )  = [ N ]  {a)>'"' + ID) 

(@}@+ 1) = [ T I  PI'"' + PI 
or 

where 

c77 = [MI - "I 
is the iteration matrix, and 

{FI= [MI - {Dl (16) 
The first theorem can be proved directly from the definition of [ A ]  of the GI method: 

Theorem 1. The coefficient matrix is not singular and [ A ] - '  > 0. 

Proof. Since there are non-positive entries in [ A ] ,  except those on the main diagonal which are 
always positive, this theorem is proved by Theorem (3.10) of Reference 8. 



366 AVI LIN 

Now consider iterative solutions that resemble the LR or the AD1 methods in some sense; in this 
case the matrices [MI and {D] + [ N ]  {a) are very similar to thosein equations (7). This means that 
[MI  consists of the three main diagonals of [ A ] ,  and [ N ]  consists of the rest of the entries in [ A ] .  
Now we can define the features of [ M ]  and [ N ] ,  

Theorem 2. For every GIL, [MI - ' > 0. 

Proof. All the entries in [MI  are zero except the main three diagonals. Let us denote the main 
diagonal by { b j ) ,  the upper diagonal by {cj)  and the lower diagonal by {uj) .  According to the GI 
method's features [equation (12), Theorem I ] ,  b, > 0, c j  < 0, u j  < 0 and aj + b, + c j  > 0. Therefore 
[ M I -  ' 2 0 according to Theorem (3.10) of Reference 8. 

Also we have: 

For every GIL [ N ]  2 0 

Proof. Since it is apparent from equation (12c) that the entries of - [ N ]  are the same as those of 
the off-diagonal entries of [A] ,  which are not positive, therefore those of [ N ]  are not negative. 

From these Theorems it can be concluded that the splitting defined by equation (13) is a regular 
splitting, which might be defined as follows: 

Definition 2. For K x K real matrices, [A] ,  [MI and [ N ] ,  equation (13) is a regular splitting if 
[ A ]  and [MI  are non-singular with [ M I -  ' 2 0 and [ N ]  3 0. Thus, equations (13) and (14) present 
a regular splitting. 

By defining the matrix [GI as 

[GI = [A1 - '"I (17) 

it can be shown that 

where [ I ]  is the unitary matrix, 2 is an eigenvalue of [GI and p is the respective eigenvalue of [ T I .  
This leads to the following spectral radius relation: 

Theorem 3. if [ A ]  = [MI - [ N ]  is a regular splitting with [A]- '  > 0, then 

where p ( H )  is the spectral radius of [HI .  Thus, [TI is convergent and the iterative procedure, 
equation (14), converges for any initial vector (@I. Usually, this convergence theorem gives 
little, if any, information regarding the rate of convergence. Even if a method converges, it may 
converge more slowly than other existing methods, and therefore such a method has no practical 
use. On the other hand this theorem is useful to find an appropriate matrix [ N ]  to optimize the rate 
of convergence. 

It can be seen from equation (20) that as p(G) becomes smaller than 1, the method will converge 
faster. This means, that as [MI  resembles [ A ] ,  and [ N ]  -+O the method is improved. Thus the 
superiority of the method can be examined by its choice for [ N ] .  In the GI method we have some 
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control on the structure of [ N ]  by the right definition of the GIL, as is shown in the following 
section. 

The optimul GI method 

In the above method the matrix [ A ]  contains three diagonals with non-zero entries, and another 
2 N  non-zero elements spreading in a symmetric fashion. All the rest of the entries are zero. An 
example is given later in equation (29). Here, the splitting of the matrix [A ]  is done in a similar way 
to equation (15) by letting its three main diagonals form the matrix [MI and all the other 2N non- 
zero elements are used to construct the [N] matrix. For the 1 = n case [see equation (lo)], all the 
entries in [ N ]  are non-negative. The optimal GI method will be obtained from solving the 
following problem: 

Find such a continuous ordering (and such a splitting of [ A ] )  that p(C)-+min. 

It is obvious that the GIL connects all the fields grid points except those that have a Dirichlet 
boundary condition. The following theorem will lead us to a possible optimal GIL procedure. 

Theorem 4. The matrix [ N ]  is singular at least of order 4. 

Proof. For a GIL that begins in one field’s corner grid point (d ,  say, see Figure 6), and ends in the 
opposite corner point (d2 ,  say), the equations for @in the two corner points (dj and d,, say) do not 
include any unknowns, except those along the GIL as is seen in Figure 6. Therefore the entries of d, 
and d ,  are zero, as well as in (d3)+  and (d4)+ ,, and the theorem is proved. Moreover, it can be seen 
that the number of non-zero eigenvalues of [C] is reduced by the number of grid points on two 
opposite boundaries. 

Let us consider the effect of the [ N ]  = (nJ values on the spectral radius. Using theorem (1.5) 
of Reference 8 one may conclude that for any n x IZ matrix [A ]  = (aij): 

Thus the maximum of the row or column sums of the absolute values of the elements of [A ]  gives 
an upper bound to p(A). This may imply that in order to reduce the spectral radius, the value of B 
should be reduced. In view of this conclusion, p will be as small as the entries of [N] are small 
compared to the entries of [MI. Thus the optimal GIL can be defined as follows: 

Figure 6. The effects of the boundaries on [ N ]  
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Figure 7. Building a GIL 

Definition 3. An optimal GIL is the line on which any three successive main points have larger 
absolute values of the difference between the absolute values of the coefficients than those of the 
side points’ coefficients. 

In other words: ifthe optimal GIL moves to the point p from the point s (see Figure 7) and if none 
of the points e, w and n are already on the line, then the three of them are legitimate candidates to 
continue the current GIL. According to this definition, the line will be continued to the point with 
the smallest absolute value coefficient. The following example will demonstrate an application of 
the GI procedure as formulated above and the main difficulties associated with it. 

Example 2 

In the second example let us consider the following Dirichlet problem 

with the boundary condition 

where Q = Q ( x , y )  is the source term. 
Let us assume for simplicity that Q = (x, y):O d x, y d 1. The above equation is discretized in the 
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usual way; a grid is spread over C l  with lines parallel to the x and y co-ordinates. It is also assumed 
that the m discrete points along the x axis and the n points along they axis are spaced evenly, so that 
the spacings (see Figure 8) 

1 
AYE- 

1 
AX = -* 

m - 1 '  n - 1  

are constant. Also, without losing generality, we will assume that 

Ax 
a=-<1, i.e. m > n  

AY 
The finite difference approximation to equation (22) is 

E = W = l  (254 

N = : S = a 2  (25b) 

P =  -2(1 + a 2 )  (254 
where E, W, N ,  S and P are defined in equation (2). Say that in this case we begin to draw the GIL 
from the lower left point of Q, as in Figure 8. 

Since the N coefficient is smaller than the E coefficient, the GIL will move up to the point 2. The 
same argument holds along all the way up to the point n - 2. Here, since the N coefficient is zero, 
the only possibility to continue the GIL is by turning it to the right towards the point n - 1. From 
this point we have again two possibilities: to continue the line to the right [to the point (i, j) = 
(4, n - l)] or downwards [to the point (i, j) = (3, N - 2)]. Since the S coefficient is smaller than the E 
coeflicient the GIL will move down to the point n, etc. 

Results for this example were obtained for ( N  - 1) x ( M  - 1) = 900 with Q = 0 and (Dw(x, y) = 0. 
As initial conditions we have chosen 

cD(x> Y)lx,yeR = 1 
Figure 9 describes the variation of the rate of convergence for the GI method as a function of a as 

well as the variation of some other similar methods such as the JLR method" and the AD1 

0.oi 0.4 4 .0  40.0 

Figure 9. Rate of convergence of the GI and other similar methods 
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method.’ The rate ofconvergence presented here is normalized with respect to the work units used 
by these methods, where the GS method is defined to use one working unit. 

It can be seen that the Jacobi implicit line relaxation (JLR) is slower than the GI method, but both 
of them are close. The Gauss-Siedel implicit line relaxation (GSLR) is better than the GI method. 
The reason is that in the GI method the variables are updated only after the whole field is 
calculated, whereas in the regular (successive) line relaxation technique the variables are updated 
on every line once they have been calculated. The main disadvantage of the GI procedure is that the 
variables cannot be updated during the course of one sweep over the field. For the Laplace 
equation it can be shown that the GSLR converges twice as fast as the JLR technique for a = 1; the 
rate of convergence of the JLR is similar to that of the GI procedure, and, as a goes up, the rate of 
convergence of the GI procedure goes up by about 20 per cent relative to that of the JLR technique. 
The main conclusion that might be derived is that the power of the spatial ordering of the grid 
points as is expressed in the creation of the GIL should be considered in another frame of iterative 
procedures. In this frame we have to emphasize the possibility of using an optimal GIL more 
carefully, as is suggested in Definition 3. A possible way to accomplish this is by examining the 
different factorizations of [ A ] .  

The two-dimensional GI method 

Let t be the index marking the elements along the GIL, then a possible factorization of the GI 
method can be expressed as follows: 

@, = Et@t + 1 + F ,  (26) 
Since the GI method with the factorization (26) [which is the same as in Theorem 31, was found not 
to be beneficial, a fully multi-dimensional iteration procedure was considered. Here, just as in the 
ST technique, the solution depends on the variables located along all the directions of the domain 
co-ordinates. The procedure may be written for one variable @ in the two-dimensional case as 

aij = Aij@,+ 1 j + BijQij+ 1 + c, (27) 
where i and j are the two direction’s indices of the domain. 

With not much additional work it can be shown that the above factorization for the GI method, 
which is like the LR method is, in some sense, a special case of the SI technique. In the spirit of the SI 
method, we can define the direction of the GIL as t and that of the AGIL as n, and formulate an ST- 
like procedure for @,: 

@t = A,@,,+ 1 + BtQnpl + c, (28) 
where the point npl is a side point which is located on the GTL, and should be one of the four 
neighbour points to the point t that appears on GIL adjacent to the point t .  Figure 10 summarizes 
several possible cases, and shows how the point npl should be chosen. In cases where two 
possibilities for choosing the point npl are available, numerical experiments have shown that as 
Inpl - tl is reduced, the rate of convergence is increased. The two dimensional GI (TDGI) 
technique is illustrated in the following example which is very similar to Example 2. 

Example 3 

about the elliptic operator that has to be resolved here. 
Let us consider the domain SZ and the GTL as are defined in Figure 11, and let us not be specific 
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Figure 10. Possible positions for the point npl on the OGIE 

The system matrix [ A ]  is 

1 
2 
3 
4 
5 
6 
I 

[ A ] =  8 
9 

10 
11 
12 
13 
14 
15 
16 

A possible algorithm point by point is 

R 

Figure 11. GIL for example 3 
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@9 = A,@,, f B9@12 + c, 
@lo  = AlO@ll+ ClO 

@ l l  = A , , @ , ,  + Cl,  

@12 = + c12 

@13 = 

@ 1 4  = A14@1S + c14 

@lS = A 1 S @ 1 6  + clS 

@16 = A16@16t, + c16 

+ B13@16 + c13 

where A ,  B, and C, are the algorithm coefficients. 

point t along the GIL from t = 1 to t = 1 6  
The algorithm coefficients can be found by comparing the governing differenced equation at the 

P,@, + N,@,, + , + S,@, - , -+ main points 
+ Etau + W,@, -+side points 

+D,=O (31) 
For t = 1 the only side point is No. 4 so that A , ,  B, and C, in equation (30) are known (in terms of 
P,, N , ,  S , ,  El, W, and Ill). For t = 2 the only side point is No. 15, so that the governing 
equation (31) can be written as: 

P2@2 + N2@3 + S2@1+ E2@15 + D, = 0 (32) 
substitution of @, from equation (30) gives the following relations: 

where 

The same procedure is repeated for t = 3,4,. . . ,16. During the evaluation of the coefficients, just as 
in the standard SI procedure, some off-diagonal values such as 0, in the equation at t = 2, are 
assumed to be known from the previous iteration. After evaluating the coefficients, new @ values 
are calculated using equation (28). 

OPTIMIZATION O F  THE GI METHOD 

Although using one GIL results in a low computer time, for long GTLs or for complex geometries it 
may be helpful to reduce the programing effort to split the GIL into several parts. It is reasonable 
to choose the cut-off points as the grid points where the convection is much smaller than the 
diffusion. That is since, as was discussed previously for the pure diffusion equation, the rates of 
convergence of the GI method and the GSLR method are comparable; what is gained with the GI 
method by having fewer and smaller eigenvalues, is lost because the iteration technique using the 
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Figure 12. A boundary-layer-like flow 

new value of the variable is not immediately used, as is the case with the GSLR method. Naturally, 
in most of the cases the grid points near a solid boundary are good candidates for marking the 
devisions of the GIL. Inner points can also serve as the dividing points of a GIL. For example, in 
solving the fluid flow equations, the points at which the flow velocities are very low, such as at  the 
centre of a vortex (or where the stream function reaches its extremum values) are a reasonable 
choice for dividing points. We will define an optimal GIL as a GIL which is divided in an optimal 
way and the method as the optimal GI (OGI) method. The optimality will be defined after some 
special cases have been considered 

Example 4 .  The boundary layer likeflow" 

A boundary layer like flow is a unidirectional flow field in which the diffusion effects are 
important only in direction normal to the outer flow direction, say x in Figure 12. We will consider 
here the following reduced Navier-Stokes equations for such a flow:' 

uu, + uup = E(U,, + uy,) (33a) 

(33b) u, + uy = 0 

where E is the inverse of the flow Reynolds number. Usually equations ( 3 3 )  are solved by marching 
techniques along x in which the u and u velocities are solved implicitly along the normal co- 
ordinate y. Let us choose the computational domain as in Figure 13, with the boundary conditions 
as depicted on the Figure. 

For a square grid Ax = A y  for standard central differences one will find that the I El and I Wf 
coefficients in equation (33a) are bigger than the IN I and IS1 coefficients; this is due to the nature of 
the boundary layer in which I u I > I uI. It follows that the GIL will be mostly normal to x. This means 
that the GI procedure resembles the marching technique for a boundary layer. Thus we may 
conclude that the break points along the GIL will be the upper ( y = y , )  and the lower ( y = 0 )  

I///,///,/// ,,,, /,;j, > 
b, t 

Cd*+ x 
Figure 13. Computational domain for the boundary layer fow 
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Figure 14. A boundary layer with injection 

boundaries. Thus the OGI technique is reduced to the standard marching procedure. This 
conclusion depends very much on the way the convection terms are differenced. However, if the 
convection terms in they direction were differenced in the upwind fashion then the GIL would not 
have to trace the boundary-layer-like marching steps. Further, if Ax # Ay, there will exist some 
points where the GIL will be parallel to the plate's x direction rather than normal to it. Since the 
GIL direction depends on the order of the finite difference scheme, we can extend the definition of a 
GIL to include terms like 'the order of the GIL'. Thus it can be said that to the second order of 
accuracy the GIL is similar to the boundary layer natural co-ordinates. 

Example 5. flow with small recirculation' ' 
Let us consider the previous example of a uniform flow over a flat plate where fluid is also in- 

jected into the flow at the wall and normal to it, and the same amount of flow is sucked back just 
downstream of the injection region as in Figure 14. 

The steady-state incompressible flow governing equations (Navier-Stokes) are 

uu, + uuy = - p, + E(U, + uyy) 

Uzi, + uuy = - p y  + F(zi,, + uy,) 

u, + uy = 0 

An equal spaced staggered mesh12 Ax = Ay is spread over the computational domain for solving 
this system numerically. All the derivatives are modelled by the standard central differences (except 

Figure 15. CILs for boundary layer with injection 
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near the right and upper boundaries and for the continuity equation (34c) at one inner point). 
If the injection velocity = u,/u, is small enough (say t7, < 0.1) so that u 3 0 in all the flow field, 

the construction of the GIL near the recirculation zone for Ax = Ay can be constructed as follows: 
Beginning from the point ‘a’ on the wall close to the injection region, as in Figure 15, the GIL will 

move up and to the left since for high Reynolds numbers 1 u l >  u in this zone whose dimensions are 
dependent on the Reynolds number. That is, because of the continuity equation, u is more or less 
the injection velocity and u varies linearly with y. The line will remain parallel to the x direction 
until a point at  which 1 0 1  < u is reached. Here the GIL will move in the direction normal to the wall. 
This direction will be kept until a point is reached at which 1 0 1  > u again and the GIL will change its 
direction again to the left, etc. This pass will eventually lead the GIL out from the recirculation 
zone, in a direction parallel to y. Thus the velocity along this pass is O(Je) and will stay more or less 
with the same value (which may have small changes because of the changes in the thickness of the 
boundary layer), and the boundary layer behaviour is recovered again. The GIL which begins at 
the point ‘b’ near the end of the sucking zone will behave similarly to that which begin at the point 
‘a’, except that it will move to the right instead of moving left. Thus, the inner recirculation centre ‘c’ 
acts like a point of symmetry; here the GIL which passes through ‘c’ is more or less normal to the 
wall. Examining this line, it can be seen that it roughly follows the normals to the streamlines $. 
Such lines resemble the potential-lines q. This observation is not a surprise since the normal velocity 
to $ along the streamline is zero (by definition), and all the convection is parallel to it. Thus just as 
the potential lines carry the maximum change of the (streamwise) velocities in the physical plane, 
the GIL points towards the maximum change of the variables on the finite difference grid. This 
conclusion results also from the fact that theoretically the GIL follows the normal direction to the 
velocity vector and the GIL pass will follow as close as possible to the normals to $. All these 
conclusions may result from the following proposition: 

Proposition 

If the derivatives of the quantities appearing in the elliptic PDE describe the motion of a fluid 
flow and these equations are solved numerically by standard central differences, then the GILs are 
the potential-like lines. 

We prefer to put this proposition in this way although the potential lines are not defined for 
viscous flow. However, if we define q to be normal to $ (and not by the continuity equation) then it 
is well posed. The proof for this proposition is rather simple in the light of the above explanation. 
However, it is not so simple to generalize this proposition to cases where the convection terms are 
treated by upwind difference methodsi3 [ I  = 0 inequation (lo)]. Sometimes it may be found that in 
these cases the best GIL is parallel to $ lines, but now there is no ad hoc proof that this is the case in 
general. In addition to these conclusions, the last proposition has much more basic applications 
than the previous GI techniques. 

In recent years many studies in the various areas in science in which elliptic equations govern 
phenomena emphasize the mapping of the domain over which the problem has to be solved as a 
basic tool of the s ~ l u t i o n . ’ ~  The philosophy is that in many problems it is preferable to map a 
complicated region and to solve a more complicated equation, rather than to solve the original 
equations on a complicated region. Many mapping techniques have been suggested.” For 
problems in fluid mechanics, the field boundaries are usually simple functions of the stream 
function (such as a constant stream function) the OGI method suggests that the potential-like lives 
be used as one of the independent field co-ordinates not only because the new region becomes 
much more simple, but because certain numerical schemes (such as the one presented here) become 
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optimal along such a co-ordinate. These methods will be discussed e1sewhere.l6 In the next section 
we will demonstrate how to apply the schemes discussed above (mainly the OGI method) to some 
simple fluid dynamic problems. 

APPLICATIONS 

This section presents some applications of the OGI method to some fluid dynamics problems. The 
purpose here is not to solve new problems, nor even to study extensively the problem’s results, but 
the main point is to compare the convergence properties of the OGI method with similar iterative 
methods (comparisons with methods which involve some special acceleration techniques such as 
the CG procedures to solve equation (1) will not be considered). It should be emphasized that the 
present method is only an iterative technique and does not overcome any difficulties which 
arise from the finite difference scheme, for example the oscillatory behaviour of the steady-state 
solution for high Reynolds number flows when central differences are used everywhere is not 
prevented. With the Proposition in the last section it is possible to make sure that the iterative 
procedure will converge the difference equations faster than the same procedure when it is used on 
a regular (horizontal-vertical) mesh, using the same iterative update technique. According to the 
OGI iterative procedure before solving a flow field, the patterns of the various parts of the GIL 
have to be guessed, more or less in the expected potential-like line directions. These patterns are 
corrected after several iterations, especially when a significant change in the convection coefficients 
(flow velocities) is encountered. If the iterative procedure is convergent then the GIL converges to 
its final OGIL pass. The procedure which generates the GIL pattern automatically is quite 
complicated. In addition to the request that this procedure will construct enough parts of the GIL 
so that all the grid points will share this line, it should be also able to deal with every part separately. 
In the present paper we are only concerned with the principles of the OGI method and not with the 
automatic generation of the GIL. Since for many problems it is not easy to formulate the right GIL, 
we have chosen in this study to present only fields with simple geometries. As a result we have 
chosen to present the OGI method for fluid dynamic problems for which the solutions are very well 
established. 

Flow over a step 

The steady-state incompressible flow over a step as it is presented in Figure 16 is popular for 
examining numerical schemes.” This flow has one main recirculating eddy, and, as the Reynolds 
number increases, smaller eddies may appear close to the corner. The results are very sensitive to 
the finite difference technique. If the convection terms were modelled by the standard central 
difference scheme then the high Reynolds number iterative solutions might diverge. If the upwind 
scheme is adopted then false diffusion effects will change the conditions of the problem. 

Figure 16. Flow over a step 
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We consider here two system of equations. The first is the primitive variable system, 
equations (34). The second is the stream function $-vorticity w formulation: 

A2$ i- w = 0 (354 

where 
UW, + VW, = V A ~ W  

W = V ,  - U y  

$,= - V  (36b) 

$ y = u  (364 
For all the derivatives central differences are employed. System (34) is solved on a staggered mesh 
as shown in Figure 17. Since the coefficients of the convection terms in this system are the same, 
both of these equations can use the same OGI method with the same GIL. Since the continuity 
equation is of the first order, it does not have a specific direction, and the diagonal dominance is 
always kept. Figure 18 presents some optimal GILs for Reynolds numbers Rh = Uh/v = 1500. The 

I" J 

i-4 i 
- x  

Figure 17. The staggered mesh 

Figure 18. GILs for the flow over a step 
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i 2 3 

Figure 19. Comparisons of the OCI method with similar iterative methods for the flow over a step 

GILs follow more or less the potential-like lines pattern. For the equal spaced mesh spreadings, 
Figure 19 presents a comparison between the OGI method and other iterative methods. The 
iteration co-ordinate in this Figure is normalized with respect to the number of work units 
expended in doing one iteration. One normalized iteration is defined as that of the LR method. The 
rate ofconvergence of the OGI method is about 3.5 times better than that of the MS12 method' and 
about 10 times better than the AD1 method. Figure 21 depicts the rate of convergence in the linear 
zone of p as a function of R,. Again it can be seen that the OGI method is superior to the other 
methods. 

r ' r  

Figure 20. The driven cavity geometry and OGILs for Reynolds number = 100 
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Figure 21. Rates of convergence for the driven cavity problem 

Now consider the $-o formulation. It is well known that the two equations should be solved in a 
coupled manner in order to avoid divergence even for relatively low Reynolds numbers. This is 
mainly due to the linear dependence of the vorticity on the stream-function gradients at the solid 
boundaries. Since $ changes mostly along the potential-like lines, it is easy to see that 
equation (35a) will have small explicit perturbations along a near optimal GIL. Thus, theoretically, 
if there were an infinite number of grid points, it would be sufficient to treat equation (35a) totally 
explicit except near solid boundaries. It was found that for the $-o system the OGI method is a 
slightly better than the LR method, which is slightly worse than the AD1 method. However, on 
checking the various procedures to generate the OGI it appears that there exists an OGIL along 
which the $-o system will converge much faster than other implicit methods as will be shown 
below. 

The driven cavity 

The field geometry of this well known problem is shown in Figure 20. 
The driven cavity case is a simple problem that has often been used to test and to compare 

numerical methods.’* The governing equations for the incompressible steady state are once again 
equations (35) and (36). Usually this problem has been solved by the $-w formation [equations (35)] ,  
but as has been discussed before, the optimal GIL which is very suitable for solving the o equation, 
is a bad choice for solving the first equation [equation (35)]  for $1 implicitly. Figure 20 presents a 
typical OGIL for half of the cavity, for Re = 100, when the primitive variable system, 
equations (34). is used. In the region close to the main vortex, the implicit lines are more or less 
normal to the streamlines, whereas the implicit lines near the boundaries give only some 
indication7 of the existence of small secondary recirculation vortices near the corners. Figure 21 
presents a comparison of the convergence rate between the OGI methods and some other similar 
iterative methods, as function of the Reynolds number. It can be seen that the OGI method is faster 
than other implicit techniques and as the Reynolds number increases the rate of convergence of all 
the methods decreases. 

CONCLUSIONS 

In this paper, an iterative strategy to solve the the algebraic system of equations arising from 
discretizing an elliptic equation by some finite difference technique has been presented. The GI and 
the OGI methods which result from this strategy reflect the effect of the current solution on the way 
the iterative process is executed. The lines along which the algebraic system is solved implicitly are 
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no longer columns or rows of the grid, but a general pass through the grid points in the field. It has 
also been shown that there is a so-called optimal line with which the maximum rate of convergence 
is achieved. 

This family of methods is new and has therefore not been exhaustively discussed. Although it is 
difficult to apply this procedure, it has been shown that it has a pronounced superiority to other 
implicit methods (which are particular cases of the GI method). 

The main application of this method is in numerical fluid dynamics problems, in which the rate 
of convergence is reduced dramatically as the Reynolds number increases. The OGI method 
depends very weakly on the Reynolds number but is very sensitive to the OGIL pass. Generally the 
OGIL follow the normals to the streamlines which in inviscid flow are the potential lines and which 
can be defined in this way also for viscous flow. 

This work represents a preleminary study of this new method in which the feasibility of this 
strategy is shown. More study is required in order to evaluate this method more generally. 
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